Showing posts with label Reviews. Show all posts
Showing posts with label Reviews. Show all posts

Friday, January 22, 2016

Review: Folger Tech 2020 i3 kit

I had been in the market for another 3D printer for my fabrication fleet, and I had my eye on a few machines during Black Friday. I narrowly missed a great sale on a Wanhao Duplicator i3 for a cool $299, and instead I settled on a Folger Tech 2020 i3 kit on sale with an LCD panel.



I had done some reading on this particular kit so I knew to expect some hurdles during it's construction. The biggest complaint that the community has - and indeed I have too - is that the build manual has several mistakes and blatant inaccuracies that Folger Tech has yet to fix. There's some simple stuff like typos of bolt dimensions - using one bolt length in one sentence and another length in the next sentence, leaving you to figure out which one they really mean. These are easy to figure out. But then there's the problem where it tells you to mount the X-axis end stop on the wrong side, and if you don't understand why 3D printers are put together the way they are, you'll have a difficult time understanding why it's moving in the "wrong" direction and why it won't home properly. I highly recommend reading the manual fully before starting to make sure you know what to expect.

There is an absolutely massive thread on the RepRap forums which contain a huge amount of information and fixes. As of this writing, the thread is at 88 pages long and I've only managed to work backwards through about half of it. If you're considering one of these kits I recommend at least skimming through the forum thread on your own, but I've tried to compile the biggest issues and fixes from my experience here.



One minor annoyance I had was with the T-nuts that were included. They are very tiny and difficult to work with and I kept struggling with getting them into place whenever I had to tighten down or move an element. I think they are the ones that are meant to be used after you've put a 2020 frame together, so that you don't have to disassemble everything. But that they are so small it makes them a pain to slide into place along a stretch of aluminum. Your kit may come with regular sized T-nuts, but if I were to buy another one of these kits, I would go ahead and get a bag of regular sized T-nuts just to save myself some frustration.


The electronics setup was straight forward if you've used a RAMPS board before. The build manual tells you where to connect things, but I do recommend pulling up the RAMPS schematic so you know what you're connecting to and why. This is especially the case with the X-axis end stop, since as mentioned before the build manual has some incorrect info.

The RAMPS board I received appears to have had some damage in shipping. I did testing of it and it doesn't seem to be more than cosmetic, but I did read that others had issues with poor quality soldering as well as similar damage. The good news is that Folger Tech is good about sending replacements for parts, but I'm holding off on seeing if that's necessary since I've put about 50 hours on the machine without any hiccups so far.




One problem I do have in the electronics department is that there is not a power switch for the machine. This is a pretty minor complaint, but I do like being able to power off the power supply without having to pull the plug or turn off a power strip. I found a mod on Thingiverse to both add a switch and a removeable power cable which is on my list of to-do upgrades.

Folger Tech has a version of the Marlin firmware on their site to download, but it's quite a few versions behind the current release. The community again comes to the rescue, and therippa has a fork of the latest release of Marlin with the Folger Tech settings already imported. There's also a version that enables auto bed tramming if you decide to upgrade to an inductive Z sensor as well - which I went ahead and added to my build, and in general I can't recommend enough.

Speaking of the Z-axis, the stock Z end stop leaves a lot to be desired. It's difficult to get it really zeroed in since it's attached to the smooth rod. There's a lot of options on how to fix this, and I went with a solution similar to what I've seen on other machines. I printed a part that attaches to the X motor mount points and puts an M3 bolt in the path of the Z end stop. This way you can easily tighten or loosen the bolt to raise or lower the contact point by small increments. I also printed a thumbscrew head for the bolt to make it even easier. Of course, if you are using auto bed tramming, you won't need to worry about this.

The Z-axis is driven by a M5 threaded rod, which seems pretty rickety compared to other machines I use that have M8 or larger lead screws. There is a popular mod for this machine to use M8 lead screws and there are several parts on Thingiverse ready to convert it over if you're so inclined. It seems like a great modification and I may switch to that in the future, but I'm not excited about having to basically completely disassemble the machine just to install it. If you decide to stick with the stock M5 threaded rod, there's also an anti-backlash hack if you want to get the most out of your stock parts. Otherwise, if you want to upgrade to a bigger threaded rod, plan on doing that during your initial build and save yourself some time.


The last problem I had with the Z-axis is that it is simply shorter than is advertised. Folger Tech's site says it has a 7" build height, but the machine really is only able to get about 5" with the Z-axis printed parts. I did find a mod on Thingiverse for Z motor stand-offs that regain the extra 2", but I'm really just confused about why it's advertised with that size. My printing volume with this hack is 200mm x 200mm x 160mm.

I've seen others who have moved the Z-axis steppers to the bottom rather than the top, and again that's something I may do in the future since the top of my machine is already pretty cramped. Between the spool holder and the LCD mount, the steppers would be nice and out of the way on the bottom.



Aside from all of that, I really am quite happy with the printer. The prints coming off of it are an excellent quality and I really have no complaints in that department. I've printed all of the modifications to the machine on itself, so it's a "true" RepRap printer in that regard. One of the first mods I made was a different filament mount, a top mounted bearing spool holder to replace the side mounted one. If you don't use a bearing driven spool holder, I can't recommend them highly enough, it reduces any filament drag artifacts from your prints.



The overall construction is great, the all aluminum frame and the corner brackets make the whole chassis incredibly rigid. This really shows through in the print quality. One thing I especially like is that it uses almost zero laser cut parts, the only ones included are to hold the Z-axis smooth rods in place. Everything else is metal-on-metal contact, or standard 3D printed RepRap parts.

I did go ahead and buy some cable management to tidy up the mess of wires. Back in my PC case modding days I used the nylon flex tubing "Techflex" religiously, so I used that for as many of the runs as I could. I also bought some drag chain for the X and Y axes to minimize issues with cables tugging or crashing into the print. Plus it makes the printer look a lot more clean and professional, which is nice.



The deal I got included an LCD screen, which I primarily use for the SD card reader since I don't like having to keep a computer attached to my printers at all times. It doesn't come with a mount or a bezel, but thankfully you already have a 3D printer to make one. There's a lot of options available depending on where you want to place yours. I may find a different location for mine since it's a tight fit between the spool holder and the LCD panel on the top. As always, be sure you check your firmware to make the necessary changes to activate the LCD panel and SD card reader!

For the price, this kit really can't be beat and I'm already very happy with it. I would hesitate to say it's great for beginners, but if you're someone who has some hands-on experience with a 3D printer - using one at school or work - and you want to make the jump to buying your own, this would be a good machine to pick up.



Here's a few collections of parts that I recommend looking in to if you're considering buying this machine, or if you already have one and want to fix some of the common bugs with it.

Collection of upgrades on Thingiverse

Collection of upgrades on the RepRap.org forums
Read More

Tuesday, November 10, 2015

Review: LulzBot Mini 3D Printer

Back in March, Freeside Atlanta won a LulzBot Mini 3D printer during a hackerspace giveaway they were running. We already have one of their older machines, an AO-100, so we were very familiar with their printers and how easy they were to use. I've used several of LulzBot's printers before - I own an AO-101 myself - and I was really interested to see what the Mini brought to the table.

As I said in my Cube 3D review, I really dislike the idea of "just press go" type of machines. 3D printing is still too young of a technology for mass adoption, and pushing fickle equipment on to the unsuspecting masses will put 3D printing in a negative light.

Having said that: the Mini is probably the best printer I've ever used.


The Mini's name comes from it's generally small build platform of roughly 6" cubed. Normally this would really deter me from using it as I am generally printing large costume pieces, but the small printing volume is the only negative I can possibly say about the machine. The machine comes fully built and ready to use, the frame is attractive and everything is very well constructed. It took us about 20 minutes between unboxing and pulling our first print off of the bed.



Included is a LulzBot branded install of Cura which has all of the settings for the Mini included, so the time between unboxing and printing was incredibly fast. There are several preset quality options, and the highest detail option at 0.1mm produces amazing results. You can go under the hood and tweak all of the print options, but the default settings produce great objects on their own.


But really, the two best features are the PEI printing surface, and the self leveling bed.

PEI is a bit of a new development in the 3D printing world. It is an "aerospace grade glass fabric polyetherimide (PEI) composite" that requires virtually no prep to use in 3D printing. It replaces the usual glass print surface and is adhered directly to the silicone heated bed on the Mini. Unlike printing on borosilicate glass, which you need to apply either kapton tape or ABS juice or purple glue stick to really get large prints to adhere, PEI bonds to both ABS and PLA when heated with no additional work needed.

For example, we 3D printed the entire Xenomorph head - around 38 prints total at ~5 hours each - and didn't have anything come detached from the bed and only very minor lifting on 1 or 2 very long prints.



Once the surface cools, your prints will come loose with very little effort, and only large flat objects need to be pried off using a clam knife. Occasionally I will clean the surface with denatured alcohol to get rid of any dust or skin oils left over from the bed being touched while removing objects, but that's the most maintenance I've had to do.

However, after about 500 printing hours being put on it, the surface has started to bubble and should probably be replaced soon. I am chalking that up to having 20 or so people at the space using it, and not everyone treating it as delicately as they should. If you are using it yourself and you treat the machine with respect - and especially waiting for the bed to fully cool down so the PEI releases it's grip - I doubt you'd have the bubbling problem.

The self leveling bed is fantastic, and virtually negates the need for any maintenance and upkeep. Unlike printers like the PrintrBot Play which use a magnetic sensor, the Mini uses electrical signal sent through the print head. In the corners of the printer are 4 metal discs, and the machine uses the change in voltage to measure when the nozzle has made contact.


On my printers at home, keeping the bed in level is the biggest struggle and the cause for any real printing issues I have. When I am building a space gun or some sci-fi armor and I'm planning on putting 200+ hours on the machines for just a single project, reducing the down time between jobs is a life saver. Using the Mini, I know that the bed will always be perfectly level and my props will come out pixel accurate to the 3D models.

The Mini comes with a 0.5mm nozzle, which compared to the 0.35mm nozzle I use at home, I was worried that the print quality would suffer. But between the PEI bed and the self leveling feature, and the rock solid construction of the body and mechanical elements, the actual print quality print for print is some of the best I've seen off of an FDM printer.

I'm debating on whether or not I want to buy one for myself, but I am strongly leaning towards doing so. My only reservation would be to wait until the stand out features of the Mini make their way into the TAZ line of printers from LulzBot, which I'm sure is inevitable. Having a 300 mm x 300 mm printing surface on PEI with a self leveling bed would make them the only FDM printer I'd ever want to use again.


If you want a printer that is reliable and doesn't require frequent upkeep, then I can't recommend this printer enough.
Read More

Tuesday, September 17, 2013

Review: 3D System's Cube 3D Printer

For a little over 7 months now I have had access to and been using a Cube 3D printer from 3D Systems, a South Carolina based company. This machine does not belong to me personally; it belongs to a colleague of mine who has more or less given me free reign over using it. In the time that I've worked with the machine I've found a lot of things I do and do not like about it.


3D printed pieces for Ultron 5, still on the print bed

For the uninitiated, the Cube 3D printer is a ready-to-use PLA and ABS printer that retails for around $1300 USD. What you get for this is the complete machine, a cartridge of material (more or this later), and all of the doodads and whatsits you need to get the thing up and running. It's marketed as a 3D printer for people who just want to press print and not worry about settings, calibrations, or building the actual machine.

On that front, it absolutely delivers. In my experience, leveling the build platform every few prints will produce the best results, but that is the most sort of upkeep I've had to perform on the machine. The menu on the front of the machine also makes leveling the platform and setting the Z height of the extruder very simple.

My biggest problem, however, is that everything about the machine and it's software is closed source and locked down. In order to generate the equivalent of G-code, you have to use their proprietary program, inside of which you have very minimal access to settings.

Worse, though, is that they require you to use their proprietary filament cartridges. A filament cartridge contains 0.7lbs of material at $50USD - approximately a 300% markup of generic spooled ABS. The printer requires that you have one of their cartridges installed otherwise it will not allow you to print at all. This is the #1 complaint of Cube owners and you can read all about it when doing your research on the printer. A few ingenious hackers have found a way of tricking the printer's firmware in to printing even with an empty printer and using a custom spool stand to print from. Myself and the owner of the machine have done this and it turned a fairly poor printer in to something that is at least worth the money.


3D printed master and resin cast copy of Gravity Gun parts

But, frankly, if I were to spend $1300 on a tool, I feel like I shouldn't have to trick or hack it to do something that literally every other 3D printer available can do on it's own. I understand the desire for a cartridge based system for the people who, again, just want to press "go". But the fact that 3D Systems have locked out using other methods - and by all accounts, updated their firmware to "fix" the exploit that was being used - is just another big red flag against these systems.

(By the way, you can still use the same hack, but there are a couple other hoops to jump through to do it. But in fear of 3D Systems reading this and patching yet another "exploit", I don't want to post it online. Sorry.)

For anyone who plans to print in ABS on this machine: I strongly recommend you buy a heated platform, which does not come included with the printer. ABS has a much higher tendency to lift than PLA does, and is much more fickle about ambient temperatures. 3D Systems' solution is a (you guessed it) proprietary glue that you put down to bond the bottom layers to the build surface. It works like a dream, if only it weren't so expensive.

On the subject of ABS being prone to temperature differences, you may want to consider building an enclosure for the printer. This is something we are planning on doing but have not yet had the chance to get done.

At this point nothing has gone wrong with the printer itself - yet. I fear the day that something catastrophic does happen, since I've heard less than pleasant things about 3D Systems' customer support. That is to say, they are fast to respond, but the responses they give you aren't satisfactory. Their platform is closed and locked down and proprietary, and that's just the way they like it.


Parts from a 15 piece Pip-Boy 3000 print in various stages of cleanup and finishing

In short, I'm not entirely sure to who this printer is marked towards. Hobbyists who want to build and tweak won't get much out of it aside from a relatively easy to use, if extremely limited printer. I don't know how many Average Joe's out there who are kinda-sorta interested in 3D printing and also have $1300 to throw away on something they may not use a lot.

I have to applaud 3D Systems for trying to get in to the home 3D printing market and making it user friendly. But they take just as many steps backwards by only allowing their proprietary software and requiring the use of over priced filament cartridges.

If you're a hobbyist and happen to own one of these, my best suggestion is to use it to print out the parts for your choice of RepRap printers and start building one of those. That's what I'm doing.
Read More